220 research outputs found

    Cerebral blood flow predicts differential neurotransmitter activity

    Get PDF
    Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in translational medicine is limited by the unknown link of observed alterations to specific neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling the observed effects to contribution from underlying neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength of these associations with receptor density is mediated by respective drug affinities. These findings suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of neurotransmitter systems in humans

    Definition of the σW regulon of Bacillus subtilis in the absence of stress

    Get PDF
    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Schizophrenia copy number variants and associative learning

    Get PDF
    Large-scale genomic studies have made major progress in identifying genetic risk variants for schizophrenia. A key finding from these studies is that there is an increased burden of genomic copy number variants (CNVs) in schizophrenia cases compared with controls. The mechanism through which these CNVs confer risk for the symptoms of schizophrenia, however, remains unclear. One possibility is that schizophrenia risk CNVs impact basic associative learning processes, abnormalities of which have long been associated with the disorder. To investigate whether genes in schizophrenia CNVs impact on specific phases of associative learning we combined human genetics with experimental gene expression studies in animals. In a sample of 11 917 schizophrenia cases and 16 416 controls, we investigated whether CNVs from patients with schizophrenia are enriched for genes expressed during the consolidation, retrieval or extinction of associative memories. We show that CNVs from cases are enriched for genes expressed during fear extinction in the hippocampus, but not genes expressed following consolidation or retrieval. These results suggest that CNVs act to impair inhibitory learning in schizophrenia, potentially contributing to the development of core symptoms of the disorder

    Reversed-phase liquid chromatography coupled on-line to estrogen receptor bioaffinity detection based on fluorescence polarization

    Get PDF
    We describe the development and validation of a high-resolution screening (HRS) platform which couples gradient reversed-phase high-performance liquid chromatography (RP-HPLC) on-line to estrogen receptor α (ERα) affinity detection using fluorescence polarization (FP). FP, which allows detection at high wavelengths, limits the occurrence of interference from the autofluorescence of test compounds in the bioassay. A fluorescein-labeled estradiol derivative (E2-F) was synthesized and a binding assay was optimized in platereader format. After subsequent optimization in flow-injection analysis (FIA) mode, the optimized parameters were translated to the on-line HRS bioassay. Proof of principle was demonstrated by separating a mixture of five compounds known to be estrogenic (17β-estradiol, 17α-ethinylestradiol and the phytoestrogens coumestrol, coumarol and zearalenone), followed by post-column bioaffinity screening of the individual affinities for ERα. Using the HRS-based FP setup, we were able to screen affinities of off-line-generated metabolites of zearalenone for ERα. It is concluded that the on-line FP-based bioassay can be used to screen for the affinity of compounds without the disturbing occurrence of autofluorescence

    Determination of the Proteolytic Cleavage Sites of the Amyloid Precursor-Like Protein 2 by the Proteases ADAM10, BACE1 and γ-Secretase

    Get PDF
    Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development

    Motor, cognitive, and functional decline contribute to a single progressive factor in early HD

    Get PDF
    Objective: To identify an improved measure of clinical progression in early Huntington disease (HD) using data from prospective observational cohort studies and placebo group data from randomized double-blind clinical trials. / Methods: We studied Unified Huntington Disease Rating Scale (UHDRS) and non-UHDRS clinical measures and brain measures of progressive atrophy in 1,668 individuals with early HD followed up prospectively for up to 30 to 36 months of longitudinal clinical follow-up. / Results: The results demonstrated that a composite measure of motor, cognitive, and global functional decline best characterized clinical progression and was most strongly associated with brain measures of progressive corticostriatal atrophy. / Conclusions: Use of a composite motor, cognitive, and global functional clinical outcome measure in HD provides an improved measure of clinical progression more related to measures of progressive brain atrophy and provides an opportunity for enhanced clinical trial efficiency relative to currently used individual motor, cognitive, and functional outcome measures

    Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils

    Get PDF
    Aspergillus fumigatus is the most common etiologic agent of invasive aspergillosis in immunocompromised patients. Several studies have addressed the mechanism involved in host defense but only few have investigated the pathogen's response to attack by the host cells. To our knowledge, this is the first study that investigates the genes differentially expressed in conidia vs hyphae of A. fumigatus in response to neutrophils from healthy donors as well as from those with chronic granulomatous disease (CGD) which are defective in the production of reactive oxygen species.Transcriptional profiles of conidia and hyphae exposed to neutrophils, either from normal donors or from CGD patients, were obtained by using the genome-wide microarray. Upon exposure to either normal or CGD neutrophils, 244 genes were up-regulated in conidia but not in hyphae. Several of these genes are involved in the degradation of fatty acids, peroxisome function and the glyoxylate cycle which suggests that conidia exposed to neutrophils reprogram their metabolism to adjust to the host environment. In addition, the mRNA levels of four genes encoding proteins putatively involved in iron/copper assimilation were found to be higher in conidia and hyphae exposed to normal neutrophils compared to those exposed to CGD neutrophils. Deletants in several of the differentially expressed genes showed phenotypes related to the proposed functions, i.e. deletants of genes involved in fatty acid catabolism showed defective growth on fatty acids and the deletants of iron/copper assimilation showed higher sensitivity to the oxidative agent menadione. None of these deletants, however, showed reduced resistance to neutrophil attack.This work reveals the complex response of the fungus to leukocytes, one of the major host factors involved in antifungal defense, and identifies fungal genes that may be involved in establishing or prolonging infections in humans

    Fluorescent Probes for Cytochrome P450 Structural Characterization and Inhibitor Screening

    Get PDF
    We have synthesized two luminescent probes (D-4-Ad and D-8-Ad) that target cytochrome P450cam. D-4-Ad luminescence is quenched by Förster energy transfer upon binding (K_d = 0.83 μM) but is restored when the probe is displaced from the active site by camphor. In contrast, D-8-Ad (K_d ≈ 0.02 μM) is not displaced from the enzyme, even in the presence of a large excess of camphor. The 2.2 Å resolution crystal structure of the D-8-Ad:P450cam complex reveals extensive hydrophobic contacts between the probe and the enzyme, which result from the conformational flexibility of the B‘, F, and G helices. Probes with properties similar to those of D-4-Ad potentially could be useful for screening P450 inhibitors
    • …
    corecore